

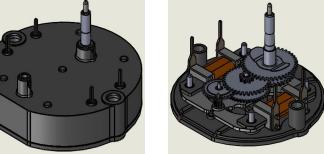
BKA30C-xx

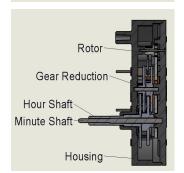
DESCRIPTION

BKA30C series Car Clock

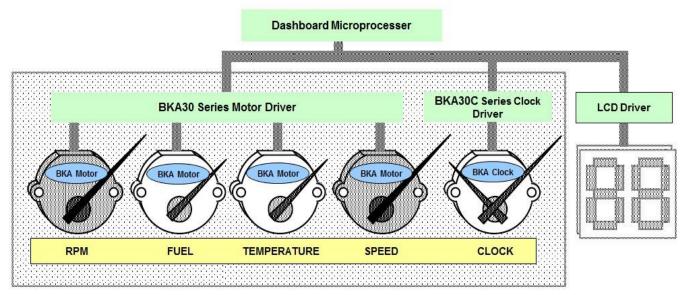
is a precise stepping motor design, which consists of a motor and gear train with a reduction ratio of 1/60 for the minute shaft and a 1/12 reduction for the hour shaft. It's mainly used in dashboard instrumentation or other digital indicator equipments, to display time.

BKA30C series Car Clock

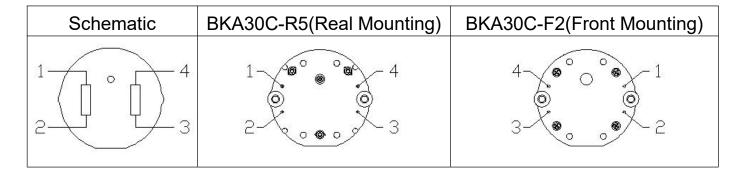

is driven by 2 sequent logic pulse signals.it can be driven by partial step mode in 5V ~ 10V power.


BKA30C series Car Clock

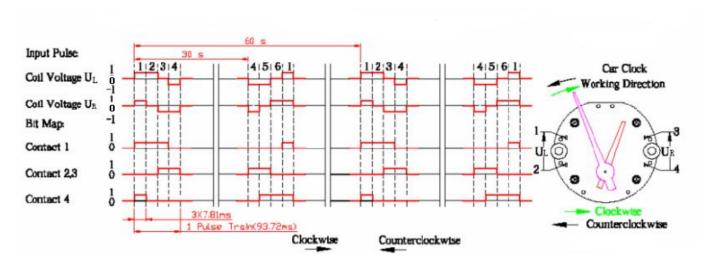
has 6 step gears design to construct high efficiency, high position accuracy and extremely robust gear system. The special gear shape is helpful to decrease friction and noise. It chooses appropriate material for each component to increase durability and safety of the motor. All these features enhance the motor's stability and long life time.


FEATURE

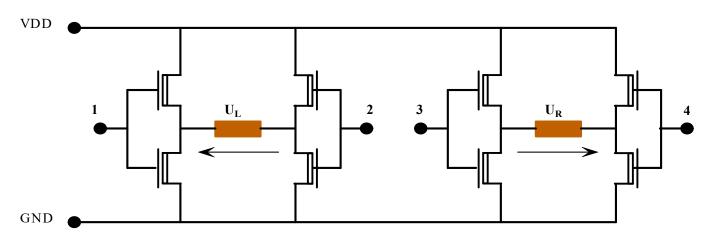
- Wide working voltage: 5~10V.
- Wide working temperature: -40~105℃.
- Low current consumption: 18mA, 5V, 2X90mW.
- Small dimension: Φ30mm X 8.4mm.
- Directly driven by a μ-controller.
- Large static torque.
- Currentless static torque.
- Qualified for automotive applications.



TYPICAL APPLICATION



PIN CONNECTION



DRIVE PULSE AND CONTROL CIRCUIT

the car clock can be directly driven by a standard logic voltage level with 18mA current output capacity In partial-step driving mode. Each pulse can make 60° revolution of rotor(minute shaft rotate 1°). The bit-time sequence determines the turning direction of the motor.

DRIVING CONTROL CIRCUIT OF PARTIAL STEP MODE

BKA30C-xx

ELECTRICAL AND MECHANICAL CHARACTERISTICS

T_{amb}=25°C and U_b=5V, unless other specified.

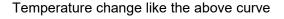
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Operating Temperature	Ta		-40		105	°C
Coil Resistance	R₀		260	280	300	Ω
Operating Current	I _m	f _a =16Hz(50°/s)		18	19	mA
Start-Stop Frequency	f _{ss}	J _L =0.2x10 ⁻⁶ kgm ²	70(210)			Hz(°/s)
Dynamic Torque	M50 M200	f _a =16Hz(50°/s) f _a =66Hz(200°/s)	0.4	0.4		mNm
Static Torque	M _s	U _b =5V U _b =0V	1.0 0.25	1.2 0.35		mNm
Gear Play				±0.3	1	Degree
Force allowed on the minute shaft:						
Axial force (push)	Fa		100	120		N
Axial force (pull)	Fa		80	100		N
Perpendicular force	Fq		12	15		N
Imposed acceleration	α_{p}				1000	Rad/s2
Noise Level	SPL	Background noise:30		35	42	dB(A)

Note: f_a – full-step frequency J_L -- Load inertia

RELIABILITY TEST

Temperature Cycle Test

Low Temperature:-40°C±2°C

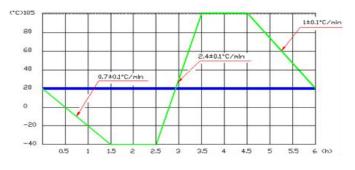

High Temperature:+105°C±2°C

Dwell time:1 Hrs/eachTransfer Time:1.5 hrs

Cycle:50 Cycles

Car clock Status : running

The test was carried out according to IEC68-2-14 and PF-9688(DaimlerChrysler)


Temperature:+50°C

Humidity:94±2%RH

Duration:144 Hrs

Car clock Status: non-running

- The test was carried out according to IEC68-2-3 and PF-9688(DaimlerChrysler)

BKA30C-xx

High Temperature Test

Temperature:+105°C±2°C

Duration:168 Hrs

Car clock Status : running

The test was carried out according to IEC68-2-2 and PF-9688(DaimlerChrysler)

Low Temperature Test

Temperature:-40°C±2°C

- Duration:48 Hrs

Car clock Status : running

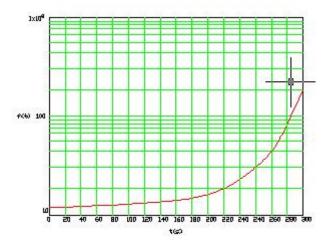
- The test was carried out according to IEC68-2-1 and PF-9688(DaimlerChrysler)

Mechanical Vibration Test

- Pulse shape: sine pulse form

Range of frequency:10Hz~200Hz(logarithm sweep)

Sweep cycle: 300 sec.Direction: axial / radial


Duration:8 hrs /each Direction

Acceleration : 6 g

Car clock Status : running

- The test was carried out according to IEC68-2-6

Frequency change with time (The following picture)

Mechanical Shock Test

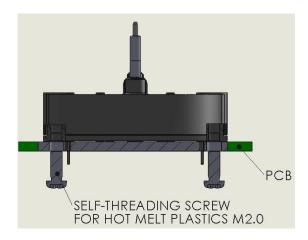
Height: 1.2 mDirection:X/Y/Z

Motor Status : non-running

- The test was carried out according to IEC68-2-62 and ISO 1413

Life Test

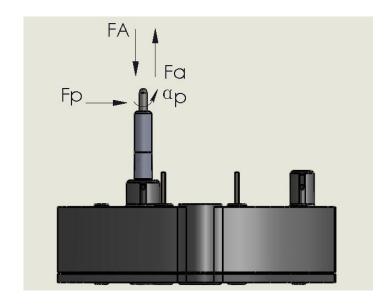
Operating time: 176 hours


Environment temperature: 20~25°C
Car clock status : fa=16HZ; non-load

BKA30C-xx

INSTALLATION ADVICE

The BKA30C series motor can be easily installed. The four contact pins can be soldered on PCB circuits. If the application is subject to very strong vibrations, screws might be necessary.



POINTER ASSEMBLY

The assembly of the pointers on the minute shaft and protrusion of the hour wheel is usually done in the pressing status. All operations should be done carefully within the values of forces(Fa and Fq) as shown in the table .During the assembly of pointers the rotor have to be in a static.

Caution

The axial force including pull force and push force can not exceed the value as shown in next figure. The perpendicular force is also. Excessive acceleration should not be imposed onto the pointer shaft (minute shaft and hour shaft). a resistless concussion on the mounting pointer might damage the gear or gear assembly, even can cause the permanent damage to the car clock.

