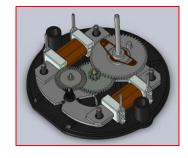


BKA30-XX


# **BKA 30-XX Series Stepper Motor**

## **Description**

- --The BKA 30-XX series stepper motor was developed as indicator driver for dashboard instrumentation and other precise indicator applications. The motor can operate directly from a numerical, i.e. digital, driving signal to move and position a pointer to visualize any parameter required. A fine analogue representation of its value and its changes is made without the need for a digital to analogue conversion.
- --The **BKA 30-XX** series stepper motor consist of a motor and gear train with a reduction ratio of 1/180. The motor is provided with big dynamic torque, low running noise and current consumption, strong structure and longevity.
- --Each half revolution of the rotor, defined as a full step, is converted to a one degree rotation of the pointer shaft. The full step itself again is divided to three partial steps, i.e., a 360 degree rotation of the pointer shaft consist of 1080 partial steps (see Fig.11). Full steps can be carried out up to 600Hz resulting 600°/s angular speed of pointer shaft, this allow a large rotation speed range for indicator application.

### **Features**

- --High Resolution: 1/3° resolution per partial step, 1/12° resolution per micro step (see Fig.10)
- --Low Consumption: mean operation current 15~20 mA
- --Small Dimensions: Φ30 x 7.2 mm
- --Large Operation Temperature Range: -40~105 °C
- --Large Running Speed Range: 0~600°/s
- --Silent & Longevous: lubricative and high intensity material for gears
- --High Reliability: Qualified for automotive applications



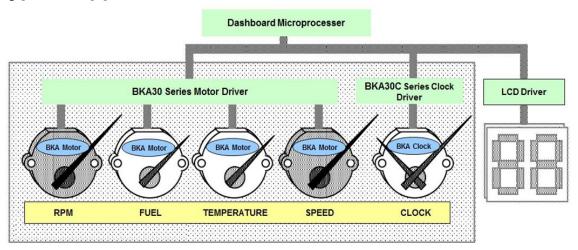
### **Motor Versions**

This specification applies only to the following motor versions:

Rear Mounting: BKA30-R xx

Front Mounting: BKA30-F xx






# BKA30-XX

| Spec.      | Mounting | Diameter of  | Height of    | Cover boss        | Full container |                      |
|------------|----------|--------------|--------------|-------------------|----------------|----------------------|
|            |          | output shaft | output shaft | diameter * height | quantity (pcs) | Remark               |
| Model      |          | (mm)         | (mm)         | (mm)              |                |                      |
| BKA30-R4   | Rear     | Ф1.0         | 10. 95       | Ф2.0*2.5          | 1000           |                      |
| BKA30-R5   | Rear     | Ф1.0         | 10. 95       | Ф2. 3*2. 5        | 1000           |                      |
| BKA30-R5XY | Rear     | Ф1.0         | 10.95        | Ф2. 3*2. 5        | 1000           | Super silent version |
| BKA30-R5SL | Rear     | Ф1.0         | 16. 30       | Ф2.7*4.0          | 500            |                      |
| BKA30-R5LY | Rear     | Ф1.0         | 16. 30       | Ф2.7*4.0          | 500            | Super silent version |
| BKA30-R5A  | Rear     | Ф1.0         | 10.95        | Ф2. 3*2. 5        | 1000           | Economic version     |
| BKA30-R5AL | Rear     | Ф1.0         | 16. 30       | Ф2.7*4.0          | 500            | Economic version     |
| BKA30-R6   | Rear     | Ф1.0         | 10.95        | Ф4.2*5.8          | 1000           |                      |
| BKA30-R6SL | Rear     | Ф1.0         | 16. 30       | Ф4.2*5.8          | 500            |                      |
| BKA30-R6A  | Rear     | Ф1.0         | 10.95        | Ф4. 2*5. 8        | 1000           | Economic version     |
| BKA30-R6AL | Rear     | Ф1.0         | 16. 30       | Ф4.2*5.8          | 500            | Economic version     |
| BKA30-R7T  | Rear     | Ф1.5         | 19.60        | Ф4.2*5.8          | 500            |                      |
| BKA30-R7TY | Rear     | Ф1.5         | 19.60        | Ф4.2*5.8          | 500            | Super silent version |
| BKA30-R9S  | Rear     | Ф1.5         | 10.95        | Ф4.2*4.0          | 1000           |                      |
| BKA30-R9SY | Rear     | Ф1.5         | 10.95        | Ф4.2*4.0          | 1000           | Super silent version |
| BKA30-F2   | Front    | Ф1.0         | 10.95        | Ф2. 3*2. 5        | 1000           |                      |
| BKA30-F3   | Front    | Ф1.0         | 10.95        | Ф4.2*5.8          | 1000           |                      |
| BKA30-F4   | Front    | Ф1.5         | 19.60        | Ф4.2*5.8          | 500            |                      |

### Table 1

# **Typical Application**





BKA30-XX

Fig. 1

# **Pin Connection**

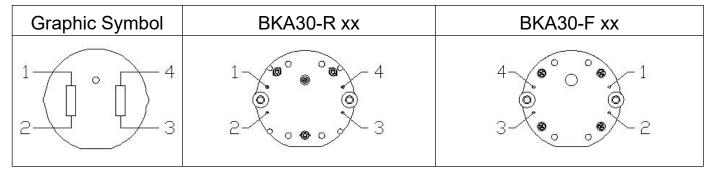



Fig. 2

# **Electronics and Mechanical Characteristics**

| Parameter                            | Sym. | Test Conditions | Min. | Туре  | Max. | Units                |
|--------------------------------------|------|-----------------|------|-------|------|----------------------|
| Operating Temperature                | Та   |                 | -40  |       | 105  | $^{\circ}\mathbb{C}$ |
| Coil Resistance                      | Rb   |                 | 260  | 280   | 300  | Ω                    |
| Operating Current                    | lm   | fz=200Hz        |      | 15    | 20   | mA                   |
| Operating Voltage                    | Ub   |                 |      | 5     | 9    | V                    |
| Magnetic Saturation Voltage          | Ubs  |                 |      |       | 9    | V                    |
| Start-Stop Frequency                 | fss  | JL=2E-7Kg/m*2   | 200  |       |      | Hz                   |
| Maximum Driving Frequency            | fm   | JL=2E-7Kg/m*2   | 600  |       |      | Hz                   |
| Di. T                                | M200 | fz=200Hz        | 1.0  | 1.3   | 1.4  | mNm                  |
| Dynamic Torque                       | M400 | fz=400Hz        | 0.75 | 0.9   | 1.05 | mNm                  |
| Static Torque                        | Ms   | Ub=5V           | 3.5  | 4.0   |      | mNm                  |
| Backlash                             | σ    |                 |      | 0.7   | 1.0  | Degree               |
| Axial Push-on Force on shaft         | FA   |                 | 100  | 120   |      | N                    |
| Axial Pull-off Force on shaft        | Fa   |                 | 80   | 100   |      | N                    |
| Radial Force on shaft                | Fp   | see Fig.9       | 12   | 15    |      | N                    |
| Imposed Acceleration                 | αр   |                 |      | 1,000 |      | Rad/s*2              |
| Holding Torque on shaft              | Th   |                 | 90   | 120   |      | mNm                  |
| Maximum Inertia of the load on shaft | Jm   | see Table 4     |      |       |      | Kgm*2                |
|                                      |      | @100° /sec      |      | 33    |      |                      |
| Noise Lever                          | SPL  | @200° /sec      |      | 38    |      | dB(A)                |
|                                      |      | @400° /sec      |      | 40    |      |                      |
| Angle of Rotation                    | β    |                 |      |       | 320  | Degree               |

BKA30-XX

\*\*\*Tamb=25°C, Ub=5V; unless otherwise specified\*\*\*

Table 2

# **Absolute Maximum Ratings**

| Parameter                              | Symbol | Value   |  |
|----------------------------------------|--------|---------|--|
| Driving Voltage                        | Ub     | 10V     |  |
| ESD Tolerance                          | UESD   | 10,000V |  |
| EMI Tolerance (1KHz,AM80%,100KHz-2GHz) | Е      | 80V/m   |  |
| Solder Temperature                     | Ts     | 260℃    |  |

Table 3

# **Typical Performance Characteristics**

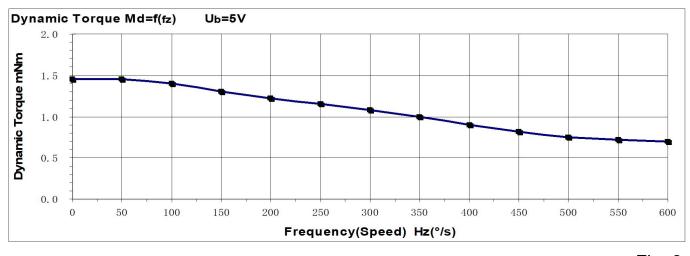
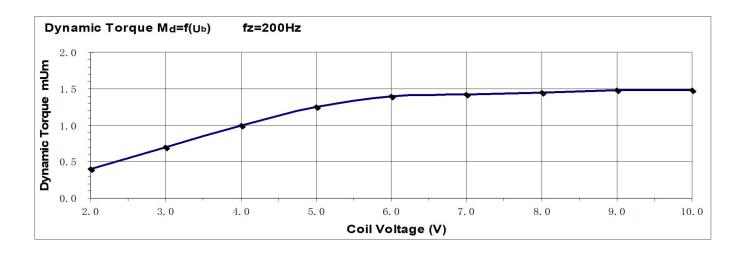




Fig. 3





BKA30-XX

Fig.4

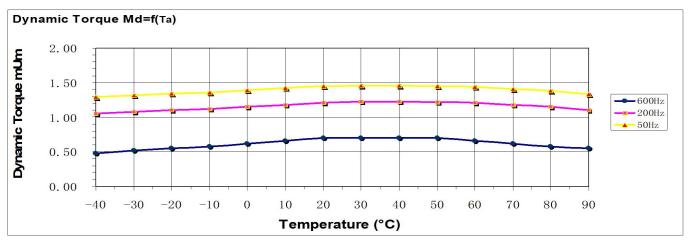



Fig.5

# **Mounting and Dimensions**

### **Motor Mounting**

--The BKA30-XX series stepper motor can be secured in place by a variety of methods. For all automotive applications even when the motor is exposed to very strong vibrations, the soldering of the contact pins is sufficient provided protection with mounting pegs are used, the mounting pegs have been developed to allow screw-free fixing in all applications.

BKA30-XX

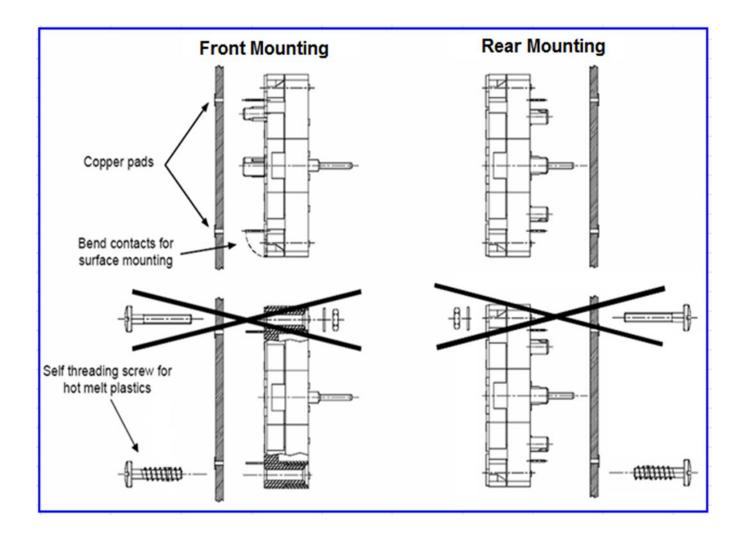



Fig.6

--As a general rule, screws are unnecessary and should be avoided as much as possible, both for cost and process capability reasons. The motor has a robust design but normal care should be taken that excessive force do not deform the housing, especially when assemble the pointer, in this case we suggest to add an additional support on the bottom of the motor during pointer assembly process against the push force on the pointer shaft.

### **Dimensions**



#### Series Stepper BKA30-XX Motor **Specification**

BKA30-XX

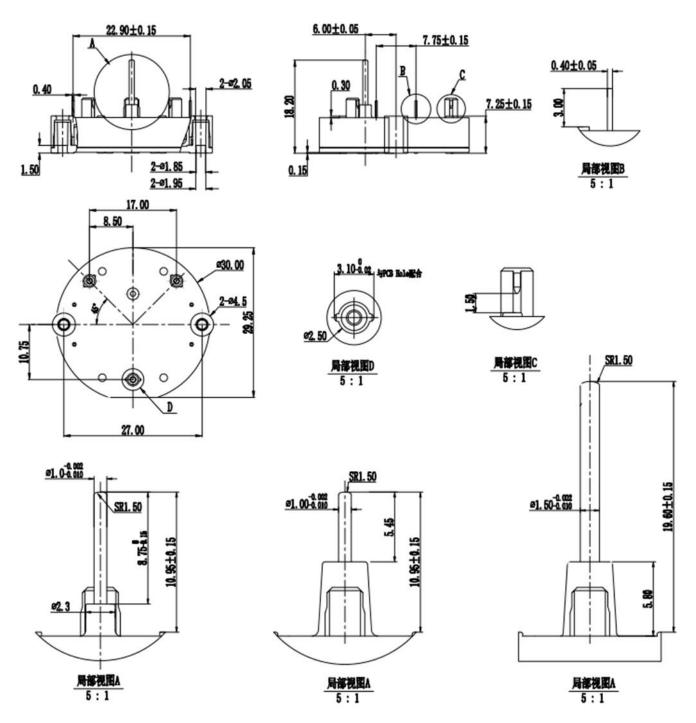



Fig.7



BKA30-XX

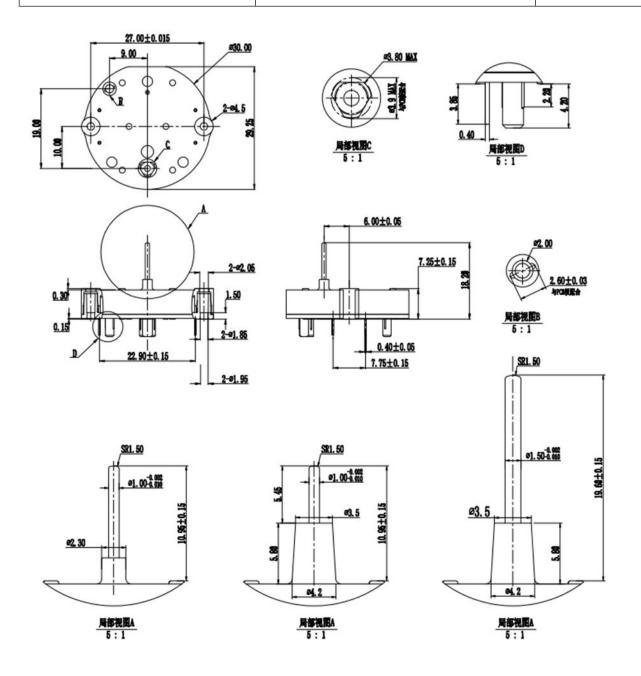



Fig.8

# Mounting Load on Pointer Shaft

The load mounting on the pointer shaft, such as a pointer, gear, etc. is usually in a pressing operation. When using this technique, care should be taken that the force do not exceed those given in the specification (see Table2).

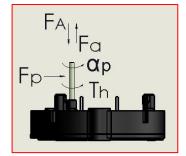



Fig.9

BKA30-XX

## **Functional Description**

### General

--The **BKA30-XX** series stepper motor consist of a motor and gear train. The integrated three step gear train reduces the rotation by a factor of 180 whereby a full step of driving pulse results

in a one degree rotation of the pointer shaft.

--As mentioned earlier, a partial step is an angular rotation of 1/3° of the motor shaft or an angular rotation of 60° of the rotor. The motor also can be driven directly by micro step, and a micro step is an angular rotation of 1/12° of the motor shaft or an angular rotation of 15° of the rotor (see Fig.11). The micro stepping allows a continuous smooth movement of a pointer if the motor is used as a pointer driver.

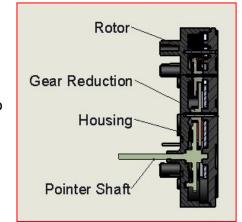



Fig.10

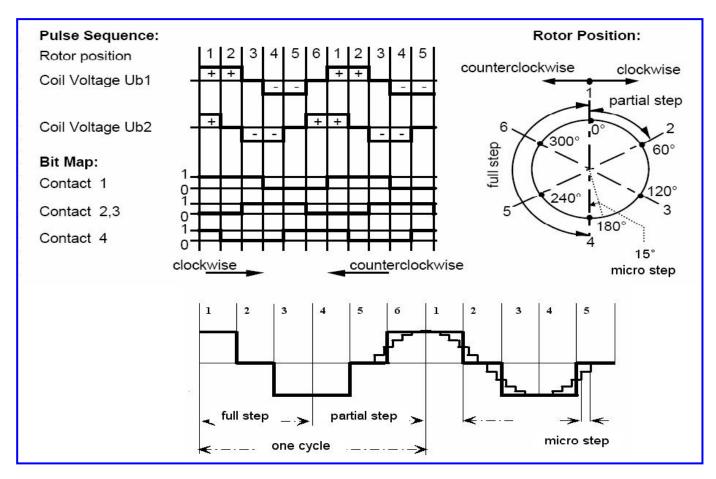



Fig. 11

BKA30-XX

# **Driving Diagram**

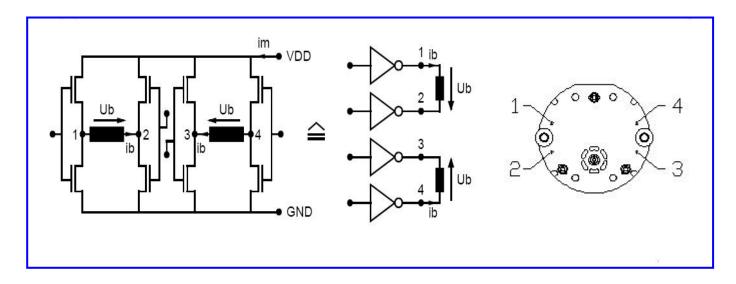



Fig.12

### Noise Lever

# **Test Configuration**

- 1. reflection free room
- 2. microphone
- 3. sonometer
- 4. motor under test
- 5. reflection free cube
- 6. control unit in micro step mode (1/12° / step)

### **Test Conditions**

- motor without load.

| <sub>-</sub> temperature | $T_{aml}$ | b : | 25       | $^{\circ}$ C |
|--------------------------|-----------|-----|----------|--------------|
| - measurement distance   | Lm        | •   | 4        | cm           |
| - measurement range      |           |     | 20 - 20k | Hz           |
| - measurement time       | tm        | :   | 4        | S            |
| - angular speed max      | ω         | ÷   | 600      | °/s          |
| - ambient noise max      |           | :   | 20       | dBA          |

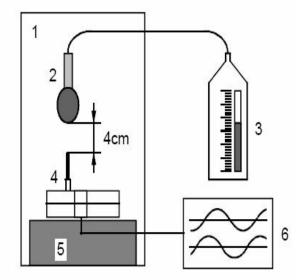



Fig.13

BKA30-XX

# Typical Noise performance

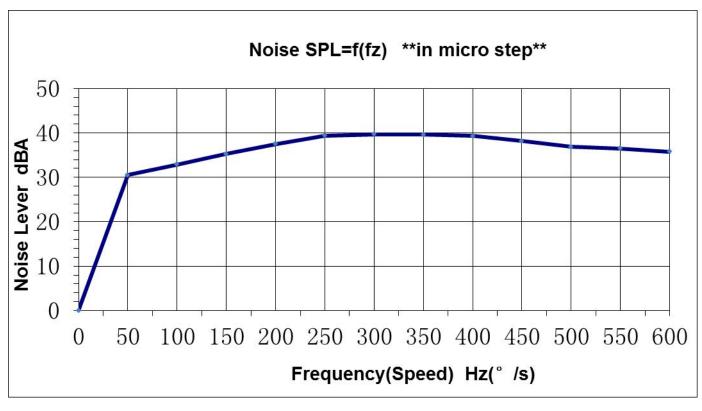



Fig.14

# Pointer Parameter

| Spec. Parameter     | Min. | Typical    | Max.        |
|---------------------|------|------------|-------------|
| Length(center-end): |      | 50mm       | 80mm        |
| Mass                |      | 2.5g       | 10g         |
| Inertia(JL=Jp)      |      | 2E-7 Kgm*2 | 20E-7 Kgm*2 |
| Unbalance(Mu)       |      | 0.01mNm    | 0.04mNm     |

Table 4

BKA30-XX

## Start-Stop frequency

The Fig.15 show the relation of Start-Stop Frequency (fss) & the inertia of the pointer load (Jp)

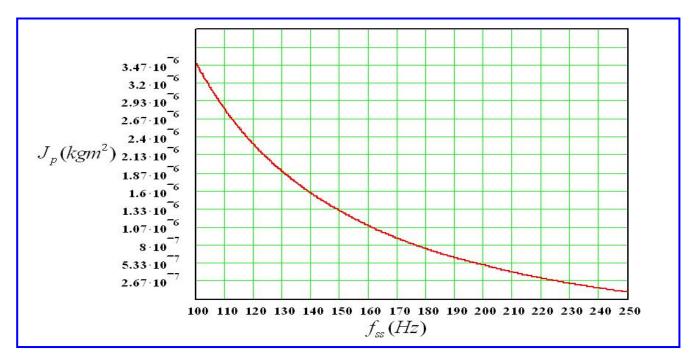



Fig.15

## **Frequency Acceleration**

The Fig.16 show the acceleration of the pointer shaft ( $\alpha$ )@ different running frequency, and if the motor is running at frequency fo, the maximal frequency of next step can be given is fi as specified in the Fig.17

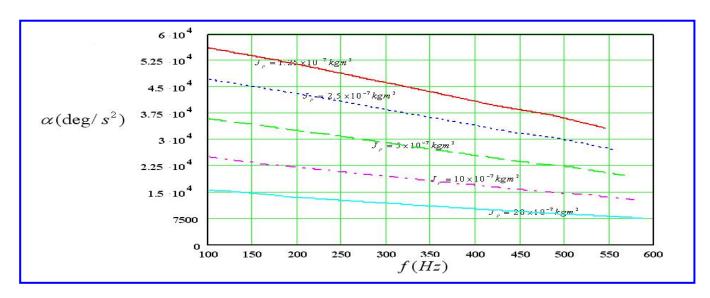



Fig.16



BKA30-XX

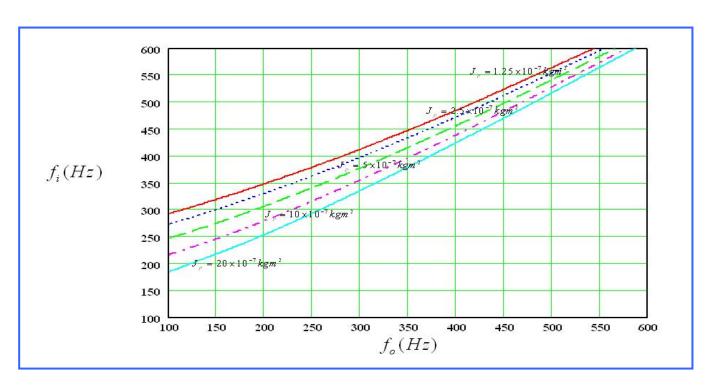



Fig.17

# **Reliability Test Conditions**

## **Indicator Normal Load**

--mass 2.5g

2E-7Kgm\*2 --inertia --unbalance 0.01mNm

# **Temperature Cycle**

- --Low temperature: -40°C±2°C
- --High temperature: +105℃±2℃
- -- Dwell time: see Fig.18
- --6hrs/per cycle, running for 50cycles, Total 300hours
- --Status: running@0~600Hz sweep
- -- Quantity of samples: 20pcs
- -Reference standard: IEC60068-2-14:1984

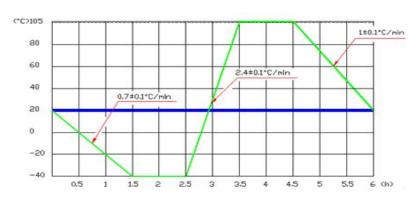



Fig.18



BKA30-XX

### Thermal Shock

--Low temperature: -40°C±2°C --High temperature: +105°C±2°C -- Dwell time: half an hour for each

-- Transfer time: Within 30s --Cycles: 100, total 100hours

--Status: non-running

--Reference standard: IEC60068-2-14:1984

## Longevity

--Temperature: 18~28°C --Storage time: 1000hours --Status: running@600Hz --Quantity of samples: 10pcs

--Reference standard: GB/T 2689.1-1981

## High Temperature Storage

--Temperature: 105°C±2°C --Storage time: 72hours --Status: non-running

-- Quantity of samples: 10pcs

--Reference standard: IEC60068-2-2:1974

### Mechanical Shock

--Shock model: vibration --Pulse waveform: sine

--Peak of acceleration: 50g/11ms

--Shock times: 5

--Shock direction: axial/radial

--Status: non-running

-- Quantity of samples: 10pcs

--Reference standard: IEC68-2-27:1987

## Low Temperature Storage

--Temperature: -40°C±2°C --Storage time: 72hours

--Status: running@ non-running -- Quantity of samples: 10pcs

--Reference standard: IEC60068-2-1:1990

## Mechanical Vibration

--Pulse waveform: sine

--Frequency: 5~200Hz, logarithm sweep

--Sweep Speed: 3 Oct/Min

--Acceleration: 6g --Amplitude: 13.2mm

--Vibration direction: axial/radial

--Vibration time: 22hours/each direction -- Status: running@0~600Hz sweep

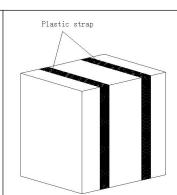
-- Quantity of samples: 20pcs

--Reference standard: IEC68-2-6:1982

## **Humidity Storage**

--Temperature: 65°C±2°C --Humidity: 95±2% RH --Storage time: 168hours --Status: non-running

-- Quantity of samples: 20pcs


--reference standard: IEC68-2-67:1995

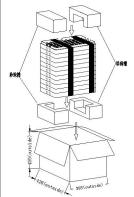
BKA30-XX

# **Package Information**

Weight: Stacks 1 x 11885 = 11280g Plastic strap 2 x 20g =

= 11320g Total




Master-carton for 1000 Motors:

Material: cardboard 710g/m2

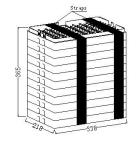
Master-carton  $1 \times 930 = 930g$ Weight:

1 x 100 = 100g 1 x 10595 = 9990g PE bag Stacks

4 x 65 = 260g Total = 11280g



Stack for 1000 Motors:


Material: 11 Trays(including Cover)strapped together

with plastic band

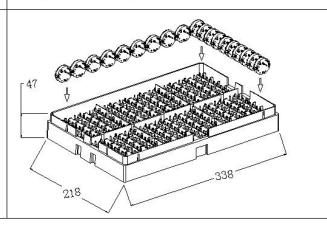
Weight: Trays + Motors  $10 \times 960g = 9600g$ 

Cover tray  $1 \times 360g = 360g$ Plastic straps 2 x 15g = 30g

Tota1 = 9990g






Tray for 100 Stepper motor

Material: PP (本色)

Weight : Tray 1 x 360g 360g

100 x 6g Motors 600g

> Total 960g

